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abstract

PURPOSE To develop and validate a cross-ancestry integrated risk score (caIRS) that combines a cross-ancestry
polygenic risk score (caPRS) with a clinical estimator for breast cancer (BC) risk. We hypothesized that the caIRS
is a better predictor of BC risk than clinical risk factors across diverse ancestry groups.

METHODS We used diverse retrospective cohort data with longitudinal follow-up to develop a caPRS and in-
tegrate it with the Tyrer-Cuzick (T-C) clinical model. We tested the association between the caIRS and BC risk in
two validation cohorts including . 130,000 women. We compared model discrimination for 5-year and
remaining lifetime BC risk between the caIRS and T-C and assessed how the caIRS would affect screening in the
clinic.

RESULTS The caIRS outperformed T-C alone for all populations tested in both validation cohorts and contributed
significantly to risk prediction beyond T-C. The area under the receiver operating characteristic curve improved
from 0.57 to 0.65, and the odds ratio per standard deviation increased from 1.35 (95% CI, 1.27 to 1.43) to 1.79
(95% CI, 1.70 to 1.88) in validation cohort 1 with similar improvements observed in validation cohort 2. We
observed the largest gain in positive predictive value using the caIRS in Black/African American women across
both validation cohorts, with an approximately two-fold increase and an equivalent negative predictive value as
the T-C. In a multivariate, age-adjusted logistic regression model including both caIRS and T-C, caIRS remained
significant, indicating that caIRS provides information over T-C alone.

CONCLUSION Adding a caPRS to the T-C model improves BC risk stratification for women of multiple ancestries,
which could have implications for screening recommendations and prevention.
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INTRODUCTION

Accurate individualized breast cancer (BC) risk es-
timates are critical for identifying women eligible for
preventive and early detection interventions. BC risk
estimates are based on combinations of clinical and
epidemiologic risk factors, such as age, family history
(FH) of cancer, age at menarche, and body mass
index.1,2 Some models also account for genetic risk
factors, typically pathogenic variants (PVs) in high-
risk (including BRCA1, BRCA2, and PALB2) and
moderate-risk genes (such as ATM and CHEK2).3-8

However, these variants are rare in the general
population and only account for approximately 6% of
all BCs and 2.6% when considering only BRCA1 and
BRCA2.5,9 To more adequately evaluate the contri-
bution of genetic factors to BC risk, polygenic risk
scores (PRSs) have been developed on the basis of
common variants associated with BC in genome-wide
association studies (GWASs). Individually, each of
these variants confers only a small increase in risk,

but collectively, as a PRS, they account for consid-
erable BC susceptibility.10-15

Recent studies have demonstrated that use of
PRSs enables more effective risk stratification and
improves the risk-benefit ratio in population-wide BC
screening.16,17 Wolfson et al17 showed that PRS infor-
mation more effectively stratified women for BC risk
than BC FH or PV alone. PRSs can be integrated with
traditional clinical risk models, which include cancer
FH, to potentially improve BC risk assessment. To date,
studies have consistently demonstrated improved BC
risk stratification with integrated models versus clinical
models alone.2,18-25

However, most polygenic models have been de-
veloped and validated in women of European
ancestry.2,12,18,21,22,26-34 When they have been
generalized to non-European populations, these
PRSs typically do not provide comparable risk
stratification.34,35 These findings highlight the need
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to develop and validate PRSs on the basis of variants
identified in women of diverse ancestries.20,23,24,35,36

Recently, we described a method to generate a cross-
ancestry PRS (caPRS) that improved risk stratification
among women of five ancestries.37 Here, we improved on
our previous caPRS and integrated the caPRS with the
Tyrer-Cuzick (T-C) clinical risk model to generate a cross-
ancestry integrated risk score (caIRS). We hypothesized
that the caIRS would be a better predictor of BC than the
T-C score alone.

METHODS

Study Populations

We used genotype and phenotype data from multiple co-
horts to develop and validate the caIRS. These cohorts
included the UK Biobank (UKB),38 the Women’s Health
Initiative (WHI, dbGAP study phs000200.v12.p3),39 the
GWAS of Breast Cancer in the African Diaspora (ROOT,
dbGAP study phs000383.v1.p1),40 and the Multiethnic
Cohort (dbGAP study phs000517.v3.p1).41 See the Data
Supplement for more details on the inclusion/exclusion
criteria.

We divided the cohorts into four study cohorts for devel-
opment and validation of the caIRS (Data Supplement).
Development cohorts 1 and 2 comprised 10,927 women
with BC (cases) and 114,390 women unaffected by BC
(controls) from the UKB (a subset), Multiethnic Cohort, and
ROOT (Data Supplement). Validation cohort 1 comprised
25,284 women from the WHI, and validation cohort 2
comprised the remaining 119,187 women in the UKB who
were not included in the development cohorts (Table 1). BC
cases in the validation cohorts were diagnosed after initial
assessment. Women diagnosed with BC within 5 years of
initial assessment in the prospective validation cohorts were
used to assess 5-year risk performance.

Genotype Imputation

We prephased genotype data from microarrays in each
study using SHAPEIT2 and imputed unobserved genotypes

using IMPUTE2 using either the 1000 Genomes Project
phase III reference or UK10K reference42,43 (further details
are provided in the Data Supplement). For sites that could
not be imputed in this way, we obtained a population-
specific allele frequency from gnomAD v3.1.1 to estimate
the average contribution of the variant.

Clinical Risk

We obtained cancer FH and risk factor information for
participants in each study and then calculated absolute risk
(5-year and remaining lifetime risk) estimates using T-C
version 8.44 We coded missing data according to the
specifications of the model.

Statistical Methods

Cross-ancestry PRS. We evaluated the performance of
multiple BC polygenic models across individuals in each of
five ancestry groups (European, African, South Asian, East
Asian, and Admixed American) using multivariate logistic
regression models adjusted for age at assessment/diagnosis,
first-degree FH of BC, and personal history of ovarian cancer
(when available). To examine the performance of each
model, we estimated the odds ratio (OR) per standard de-
viation (SD) and area under the receiver operating char-
acteristic curve (AUC) in development cohort 1 and included
the best performing model for each ancestry in the caPRS
(Data Supplement).

We defined the caPRS as a linear combination of the best
performing PRSmodel for each ancestry group weighted by
the effect size and fractional ancestry. We evaluated the
impact of FH of BC in first-degree relatives on caPRS by
fitting an additional interaction term to the models. Further
details can be found in the Data Supplement.

Associations between caPRS and T-C variables. We
assessed the association between the caPRS and T-C
variables in development cohort 2 using a linear regression
model in which we predicted caPRS as a function of each of
the T-C variables. We examined the regression coefficients
and P values associated with the F statistic in these models.

CONTEXT

Key Objective
To develop a risk prediction model using polygenic risk scores that improves breast cancer (BC) risk stratification over a

standard-of-care tool, the Tyrer-Cuzick (T-C) clinical model, that can be applied to women of diverse ancestries.
Knowledge Generated
The cross-ancestry integrated risk score is significantly associated with BC risk and is well-calibrated in a validation set

consisting of women of European and non-European ancestries. Relative to the T-C model alone, the cross-ancestry
integrated risk score improved risk stratification for women of diverse ancestries.

Relevance
Addition of a cross-ancestry polygenic risk score to the T-C clinical model provides more accurate, individualized BC risk

estimates for unaffected women of multiple ancestries for screening and prevention.
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Cross-ancestry integrated risk score. We estimated the
effect size associated with the caPRS in development
cohort 2 using a multivariate logistic regression that in-
cluded caPRS, age at assessment/diagnosis, FH of BC,
personal and FH of ovarian cancer (when available), and
cohort. We separated data from the women unaffected by
BC into 12 groups on the basis of age and first-degree FH of
BC and calculated an adjustment constant for each group.
We then calculated the 5-year and remaining lifetime
risks on the basis of the T-C clinical model and caIRS
(T-C combined with the caPRS). Further details are pro-
vided in the Data Supplement.

Validation studies. We evaluated the performance of the
caIRS in two independent validation cohorts of women who
were not used for model development. Associations with
BC risk were evaluated in terms of P values and OR per SD
from multivariate logistic regression models adjusted for
age. The AUC was used to assess model discrimination. All
analyses were performed using R Statistical Software
(v4.1.0 or higher). Two-sided P values were calculated from
likelihood ratio chi-square test statistics and reported at
a significance level of .05. All analyses were performed for
5-year and remaining lifetime BC risk.

Reclassification of risk. To assess how the caIRS would
affect screening in the clinic, we examined sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) for 5-year risk using ≥ 3% as the
high-risk threshold on the basis of the US Preventive
Services Task Force recommendation for risk-lowering
medications45 and remaining lifetime risk using ≥ 20%
as the high-risk threshold. No adjustments were made for
competing mortality in our analysis.

RESULTS

Cross-Ancestry PRS

We built multiple polygenic models by training on multiple
external GWAS sources (Data Supplement) and compared
their performances against several published models. To
ensure uniformity of evaluation, the performance of each
PRS was evaluated on the same group of testing individuals
(see the Data Supplement for cohort information). For each
ancestral group, we selected themodel that showed the best
performance (Data Supplement). The AUC ranged from
0.636 to 0.684 for women of European descent and from
0.568 to 0.591 for women of African descent (Data Sup-
plement). The scores for each ancestral model were

TABLE 1. Validation Cohort Characteristics
Self-Reported
Ethnicity Total, No. (%)

5-Year Cases,
No. (%)

5-Year Controls,
No. (%)

Lifetime Cases,
No. (%)

Lifetime Controls,
No. (%)

Validation cohort 1 25,284 (100.0) 538 (2.1) 24,746 (97.8) 1,997 (7.9) 23,287 (92.1)

African American/Black 7,650 (30.3) 146 (27.1) 7,504 (30.3) 612 (30.6) 7,038 (30.2)

White 14,426 (57.1) 334 (62.1) 14,092 (56.9) 1,192 (59.7) 13,234 (56.8)

Hispanic/Latino 3,208 (12.7) 58 (10.8) 3,150 (12.7) 193 (9.7) 3,015 (12.9)

Age range, years 49-81 50-79 49-81 50-79 49-81

Median age, years 64 65 64 63 65

≥ 1 FDR with BC 3,748 (14.8) 98 (18.2) 3,650 (14.7) 387 (19.4) 3,361 (14.4)

caPRS range −1.7 to 1.7 −1.1 to 1.7 −1.7 to 1.7 −1.3 to 1.7 −1.7 to 1.7

caPRS median 0.41 0.39 0.41 0.40 0.41

Validation cohort 2 119,187 (100.0) 3,628 (3.0) 115,559 (97.0) 8,115 (6.8) 111,072 (93.2)

Black 1,239 (1.0) 19 (0.5) 1,220 (1.1) 56 (0.7) 1,183 (1.1)

Chinese 468 (0.4) 6 (0.2) 462 (0.4) 16 (0.2) 452 (0.4)

White/White British 104,661 (87.8) 3,242 (89.4) 101,419 (87.8) 7,255 (89.4) 97,406 (87.7)

(South)Asian or Asian British 1,327 (1.1) 29 (0.8) 1,298 (1.1) 75 (0.9) 1,252 (1.1)

Others 11,492 (9.6) 332 (9.2) 11,160 (9.7) 713 (8.8) 10,779 (9.7)

Age range, years 40-70 40-70 40-70 40-70 40-70

Median age, years 57 59 57 59 57

≥ 1 FDR with BC 13,095 (11.0) 588 (16.2) 12,507 (10.8) 1,290 (15.9) 11,805 (10.6)

caPRS range −4.3 to 4.6 −3.2 to 4.6 −4.3 to 4.4 −3.5 to 4.6 −4.3 to 3.8

caPRS median −0.12 0.37 −0.13 0.33 −0.15

NOTE. The validation cohorts consisted of women from the Women’s Health Initiative (validation cohort 1) and the UK Biobank (validation
cohort 2).

Abbreviations: BC, breast cancer; caPRS, cross-ancestry polygenic risk score; FDR, first-degree relative.

JCO Precision Oncology 3

Cross-Ancestry Integrated Risk Score for Breast Cancer

Downloaded from ascopubs.org by 71.121.253.199 on February 22, 2023 from 071.121.253.199
Copyright © 2023 American Society of Clinical Oncology. All rights reserved. 



combined and weighted by fraction ancestry and effect size
into a single caPRS. We evaluated the performance of the
caPRS in development cohort 2. The caPRS was signifi-
cantly associated with BC (P = 2.3 × 10−143), and the caPRS
quantile was correlated with odds of BC (Data Supplement).

In addition, we examined the performance of the caPRS in
women with and without first-degree FH of BC. We found
no significant interaction between the caPRS and first-
degree FH of BC for all population groups (P values
ranging from 0.068 to 0.91), indicating that the association
between the caPRS and BC is independent of FH of BC
and that the caPRS is associated with BC risk in women

with and without FH of BC. This is consistent with a recent
publication that examined FH and PRS across . 20
diseases.46

Associations Between caPRS and T-C Variables

We examined associations between the caPRS and T-C
model clinical factors in development cohort 2 using a
linear regression model. The caPRS was significantly as-
sociated with age (P = 2.6 × 10−38) and first-degree FH of
BC (P = 4 × 10−49). After Bonferroni correction for multiple
testing, the caPRS was not correlated with any other T-C
model clinical factors (Data Supplement).
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FIG 1. Performance of caIRS compared with T-C alone in predicting 5-year and remaining lifetime risk of BC for women in the validation
cohorts. AUC, area under the receiver operating characteristic curve; BC, breast cancer; caIRS, cross-ancestry integrated risk score; FPR,
false-positive rate; ROC, receiver operating characteristic curve; T-C, Tyrer-Cuzick; TPR, true-positive rate.
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Validation Studies

Validation cohort 1 comprised 25,284 women from the WHI,
including 1,997 (7.9%) women diagnosed with BC after
initial assessment, with a mean follow-up time of 17 years.
Validation cohort 2 comprised the remaining 119,187
women in the UKB, including 8,115 (6.8%) diagnosed with
BC, with a mean follow-up time of 6 years. Table 1 shows the
subgroup sample sizes, after exclusions, in each validation
cohort. The caPRS was significantly associated with 5-year
and remaining lifetime risk in both validation cohorts (Data
Supplement).

Figures 1 and 2 summarize relative performance im-
provements with the integrated risk score. The caIRS was
significantly associated with 5-year and remaining lifetime
risk of BC (Data Supplement). In both validation cohorts, the
caIRS yielded significant improvements over the conven-
tional T-C with an AUC of 0.65 (95%CI, 0.64 to 0.66) and an
OR per SD of 1.79 (95%CI, 1.70 to 1.88) in validation cohort
1 and an AUC of 0.66 (95% CI, 0.65 to 0.66) and an OR per
SD of 1.75 (95% CI, 1.71 to 1.79) in validation cohort 2 for
remaining lifetime risk (Table 2 and Data Supplement). In
addition, when both the T-C and caIRS were included in a
multivariate, age-adjusted logistic regression model, caIRS
remained significant, indicating that the caIRS provides

information over the T-C alone (P = 2.1 × 10−92 and, 10−324

for validation cohorts 1 and 2, respectively).

The caIRS outperformed the T-C alone for all subgroups
tested in both validation cohorts, with the largest im-
provement in remaining lifetime risk observed in Hispanic
women in validation cohort 1 where the OR per SD in-
creased from 1.31 (95% CI, 1.10 to 1.54) to 1.88 (95% CI,
1.62 to 2.19) and the AUC increased from 0.58 to 0.68 and
in European women in validation cohort 2 where the OR per
SD increased from 1.29 (95% CI, 1.25 to 1.33) to 1.78
(95% CI, 1.74 to 1.82) and the AUC increased from 0.57 to
0.66 (Fig 2 and Data Supplement).

Overall and for all self-reported ancestry groups, the caIRS
was well calibrated across all deciles (Data Supplement).
Overall, in validation cohort 1, the P values associated with the
Hosmer-Lemeshow test statistic were 0.16 and 0.44 for 5-year
and remaining lifetime BC risk, respectively. In addition, the
expected-to-observed ratio at the highest risk decile were 1.07
(95% CI, 0.89 to 1.29) and 1.06 (95% CI, 0.96 to 1.17) for
caIRS for 5-year and remaining lifetime BC risk, respectively.

Reclassification of Risk

Across all women and for women in each population group,
we saw an increase in sensitivity and a slight decrease in
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FIG 2. Performance of caIRS compared with the T-C clinical model alone in predicting remaining lifetime risk of breast cancer across self-reported
ethnicities in validation cohort 1 (A) and validation cohort 2 (B). Data for Chinese women in validation cohort 2 are not shown because of small sample
size, but an improvement is observed (Data Supplement). AUC, area under the receiver operating characteristic curve; caIRS, cross-ancestry integrated
risk score; OR, odds ratio; SD, standard deviation; T-C, Tyrer-Cuzick.
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specificity for 5-year risk estimation. However, PPV and, to
a lesser extent, NPV increased in all groups compared with
the T-C (Data Supplement). The largest gain in PPV using
the caIRS occurred in Hispanic women, where we observed
a nearly three-fold increase relative to that of the T-C while
having a similar NPV. Overall, 18.3% and 30.6% of women
who developed BC within 5 years of initial assessment were
predicted to be at high risk (≥ 3%) by T-C and caIRS,
respectively. Across the two methods, 8.8% of women had
discordant classifications of risk.

We observed a similar trend for remaining lifetime risk for
women in validation cohort 1 with a couple of exceptions.
Despite an increase in AUC and sensitivity of the caIRS in
Hispanic women, we observed a small drop in PPV across
all age groups (Data Supplement). We observed the
largest gain in PPV using the caIRS in African/African
American women, an approximately two-fold increase,
with an NPV equivalent to that of the T-C. The caIRS was
able to correctly identify 6.2% of cases as high risk across
all women age younger than 70 years in validation cohort
1, a 3-fold increase over the T-C alone. Both measures
were able to identify more affected younger women (50-59
years) as being at high risk.

Overall, 8.8% and 6.7% of women across both validation
cohorts were classified differently on the basis of 5-year and
remaining lifetime risk, respectively, using the caIRS com-
pared with the T-C alone (Figure 3 and Data Supplement).

DISCUSSION

Addition of single nucleotide polymorphism (SNP)-based
PRSs to existing clinical BC risk predictionmodels has been
shown to enhance discriminatory power.2,18,19,21,22,47-49

Most of these PRSs were developed in women of Euro-
pean ancestry; by contrast, our caPRS is informative for
women of multiple ancestries.

This study built a framework to efficiently iterate over
polygenic models and addressed the limitations of some
previous studies. First, our approach does not rely on self-
reported ancestry (which can be inaccurate) in normalizing

risk scores or a one-size-fits-all polygenic model. Second,
our approach is not limited to a small set of SNPs, allowing
us to add and remove variants as new data become
available. Finally, both our development and validation
cohorts were chosen to include minorities so that we could
optimize risk stratification across women of diverse an-
cestries in parallel. Although our caIRS is significantly
associated with risk of BC and improves on the perfor-
mance of the T-C model in women of diverse ancestries, we
see the best performance in women of European ancestry.

When developing a new method of assessing disease risk,
maximizing sensitivity to identify women at higher risk of
developing BC can lead to a loss of specificity. This tradeoff
can be attenuated with proper calibration such that
combining the PRS with the clinical model does not se-
verely overestimate risk. In this study, we observed a small
drop in specificity (1%-4% depending on the population)
compared with the T-C when examining women of all ages.
The small drop in PPV andNPV for remaining lifetime risk in
Hispanic women despite an increase in AUC and OR could
indicate that a 20% threshold is not optimal for the inte-
grated risk in this population.

Here, we demonstrated that the caIRS, which combines a
caPRS derived from five ancestry-specific polygenic models
with the T-C risk model, significantly improved BC risk
stratification across women of all ancestries tested relative to
the T-C risk model alone. Overall, we found that approxi-
mately 8%-9% and 2%-6% of women would be reclassified
as having a 3% or greater 5-year risk and 20% or greater
remaining lifetime risk of BC, respectively, according to
caIRS. If guidelines included the use of PRSs, these women
would now qualify for consideration of risk-lowering medi-
cation and/or enhanced surveillance according to US
Preventive Services Task Force and American Cancer
Society recommendations.45,50 In addition, approximately
0.5%-1.5% would be reclassified as having , 20%
remaining lifetime risk of BC.

This study has some limitations because of the cohorts used
for development and validation. In all cohorts, the

TABLE 2. Performance of T-C Alone and caIRS in Predicting 5-Year and Remaining Lifetime Risk of Breast Cancer Across All Women in the
Validation Cohorts

Model

5-Year Risk Remaining Lifetime Risk

OR Per SD
(95% CI) P

AUC
(95% CI)

OR per SD
(95% CI) P

AUC
(95% CI)

Validation cohort 1

T-C 1.18 (1.08 to 1.28) 1.9 × 10−4 0.56 (0.54 to 0.59) 1.35 (1.27 to 1.43) 2.8 × 10−24 0.57 (0.56 to 0.59)

caIRS 1.62 (1.50 to 1.76) 1.8 × 10−30 0.65 (0.62 to 0.67) 1.79 (1.70 to 1.88) 4.5 × 10−110 0.65 (0.64 to 0.66)

Validation cohort 2

T-C 1.11 (1.08 to 1.15) 2.3 × 10−10 0.57 (0.56 to 0.58) 1.28 (1.25 to 1.32) 5.8 × 10−75 0.57 (0.57 to 058)

caIRS 1.46 (1.42 to 1.51) 9.8 × 10−128 0.63 (0.62 to 0.64) 1.75 (1.71 to 1.79) , 10−324 0.66 (0.65 to 0.66)

Abbreviations: AUC, area under the receiver operating characteristic curve; caIRS, cross-ancestry integrated risk score; OR, odds ratio; SD,
standard deviation; T-C, Tyrer-Cuzick.
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representation of Asian women was much lower than other
ancestral groups.Wehope to address this by analyzing larger
data sets from women of East and South Asian ancestries.
Single gene variant information was not available for all
cohorts. We do not expect this to significantly affect the
results because the majority of women will not have PVs. We
includedWhite participants in theWHI in validation cohort 1;
however, it should be noted that a subset of these women
were part of a much larger GWAS study that was used in the
development of models included in the caPRS. It may be
expected that the performance of the caIRS would be ele-
vated in this group; however, the performance of the self-
reported White women in validation cohort 2 is similar to that
of self-reported White women in validation cohort 1.

The clinical information available for women in validation
cohort 2, particularly for FH, was less detailed than that
expected for the T-C model. Thus, the improvement in the
accuracy and predictive ability of the caIRS compared
with that of the T-C may be somewhat inflated. However,
the overall performance (AUC) of the caIRS remained
consistent in both cohorts, suggesting that the caIRS is
applicable even when detailed FH information is un-
available. In addition, the major change in v8 of the T-C
model was the addition of breast density. We did not have
that information for the women in our cohorts and

therefore relied on default values in themodel. This can be
addressed by testing the caIRS in a cohort of women with
extremely detailed clinical records.

Finally, we validated our caIRS in population cohorts, not
women receiving hereditary cancer screening. We found
that the caPRS works equally well in women with
(n = 4,081; OR per SD, 1.74 [95% CI, 1.57 to 1.93];
P = 5.5 × 10−27) and without FH of BC (n = 32,678; OR per
SD, 1.73 [95% CI, 1.65 to 1.82]; P = 9.1 × 10−119) in
development cohort 2. This suggests that the caIRS will
perform as well in populations with higher percentages of
FH. In addition, the women in validation cohort 1 are
older, postmenopausal women, which likely does not
represent the group of women for whom both measures
are most effective at identifying those at high risk and who
may benefit most from early/additional surveillance. To
address both these limitations, we plan to test the caIRS in
younger, unaffected women seeking hereditary cancer
screening.

Implementation of a more comprehensive risk model, as
discussed here, may enable personalized screening and
risk reduction strategies for women who are at high risk of
BC, regardless of ancestry.
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